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COMPUTATION OF TOPOLOGICAL DEGREE 
USING INTERVAL ARITHMETIC, AND APPLICATIONS 

OLIVER ABERTH 

ABSTRACT. A method is described for computing the topological degree of a 
mapping from Rn into Rn defined by n functions of n variables on a region 
specified as a product of n intervals, a generalized box B . The method is an 
adaptation of Kearfott's method to boxes, and begins by checking the signs of 
the n functions on the boundary of B with interval arithmetic. On the basis 
of this check, a portion, B(1), of the boundary of B is designated for further 
investigation, and one of the n functions defining the mapping is dropped. The 
signs of the remaining functions are checked on the boundary of B(1) . Again a 
portion, B(2), of the boundary of B(1) is designated for further investigation, 
and another of the functions is dropped. On the nth cycle of the process, 
the topological degree finally is evaluated by determining the signs of a single 
function on a collection of isolated points, comprising the boundary of a region 

B(n-1) 

When the topological degree is nonzero, there is at least one point inside 
B where the n functions are simultaneously zero. To locate such a point, the 
familiar bisection method for functions f(x) defined over an interval [a, b], 
using sign changes of f(x) , is easily generalized to apply to n functions defined 
over boxes, using the topological degree. For this application we actually use the 
topological degree mod 2, the crossing parity, because its computation is easier. 
If the n functions have all partial derivatives in the box B, with, a nonzero 
Jacobian at any point where the functions are simultaneously zero, then all such 
points inside B can be located by another method, which also uses the crossing 
parity. 

1. INTRODUCTION 

Let B be a closed region of Rn defined as a product of the n intervals 

(1) ai <xi <bi, i =1,~2,... ,n. 

When n is 3, the region B is a box, and for arbitrary n we will use this term 
for the region B. Defined on the box B is the mapping F from Rn into Rn 
given by the equations 

Yi = fi(Xi, ,Xn), i=1, 2, ..., n, 

where the functions f1 are all real and continuous on B. A point Po in B 
where all functions f1 are simultaneously zero is usually called a zero of the 
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functions. The computational problem of finding a zero can be solved by a gen- 
eral bisection method [ 10] using the topological degree to detect the presence of 
zeros inside subregions of B. Various methods of computing the topological 
degree have been proposed. O'Neal and Thomas [14] suggest using quadra- 
ture methods to evaluate the Kronecker integral formula for topological degree. 
Stenger [16] describes a method, derived from the Kronecker integral formula, 
which involves determining only the signs of the functions fi over portions 
of the boundary of a polyhedral region of interest. This method was used to 
develop bisection methods [7, 15] which reduce the region of search to progres- 
sively smaller simplexes in Rn. Kearfott describes two methods, one [8] that 
is related to Stenger's method, and another [9] that is recursive, repeatedly re- 
ducing by one the number of functions to be considered. This second Kearfott 
method is the basis of our method, which is restricted to boxes. Here, interval 
arithmetic [3, 11, 12, 13] is used to determine the signs of the functions fi on 
various k-dimensional subboxes contained in the boundary of the starting box 
B. 

In the next two sections the method is described, and an example of its 
application is given. The general bisection method we employed is described in 
?4. When all n functions have continuous first partial derivatives in B, with 
a nonzero Jacobian at each zero, then all zeros inside B can be found, and a 
method for doing this is described in ?5. 

2. A METHOD FOR COMPUTING THE TOPOLOGICAL DEGREE 

In this section we use the terminology and notation of combinatorial topology 
[4, 6]. The term "Jacobian" will denote the determinant of the n-square matrix 
with elements Ofi/Oxj evaluated at some specific point. Let 0 be the origin 
in Rn, and suppose that 0 does not lie on F(OB), the image of the boundary 
of B. The topological degree d(F, B, 6) equals i(Cn, 6), the intersection 
number of Cn with 0, where Cn is a polyhedral complex with boundary 
Zn-1 such that Cn approximates F(B) to sufficient accuracy [6, pp. 2-55]. 

For the case where n > 2 if the functions fi have all partial derivatives 
defined and continuous on B, with their Jacobian nonzero at all zeros, 

i(Cn, f) = ,sgn ydet 0-(Xfl X2 ). , fn ) 

where the summation is over the zeros of F. (The function sgn(u) is + 1 if u 
is positive and -1 if u is negative.) Of course, i(Cn, 0) is defined regardless 
of whether Jacobians are nonzero or even whether the partial derivatives are 
defined. The determination of the intersection number can be made by exami- 
nation of the polyhedral complex used to approximate F(B). To simplify the 
discussion, we will assume that partial derivatives (or ordinary derivatives) are 
defined and that the various Jacobians listed are nonzero. 

There is the general relation [4, pp. 419-420] 

i(Cn, 6) = i(H1 Zn-i) 

where H1 is any one-dimensional ray from 0 that is in general position with 
respect to the boundary cycle Zn-l . To carry out the computation of topo- 
logical degree as i(HI, Zn-1), we form a list L and load it initially with 
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designations for the 2n sides of B. This can be done efficiently by arrang- 
ing that a list element contain the fields si, i = 1, ... , n, each field being 
flagged either as a "point" holding a single number a, or as an "interval" hold- 
ing a number pair a, b, with a < b. We distinguish the two cases by writings 
si = a or si = [a, b]. Thus the list is initially loaded by constructing, for 
j = 1, 2, ..., n, the two list elements: 

(2) { = [ai, bil for i 
#I 

j, 
aj fori -j, 

{i = [as, bi] for i # , (3) 
~~~~~~~~bj for i =j. 

A list element has one additional field, "orientation", which can assume one 
of two values, + 1 or -1 . We assign orientation as follows: Let 0 be the point 
of B which would become the origin if B were translated so that its edges lie 
along the positive coordinate axes, and let Xi be the point of B which after the 
translation would lie furthest along the xi-axis. The positively oriented simplex 
(OX1X2 ... Xn) is used to assign an orientation to any side of B that contains 
the point 0. Thus, the side which has xj = aj corresponds to the simplex 
(OX, ... Xj> Xj+ ... Xn) with orientation a = (-1)j. The opposite side of 
B which has xj = bj must take the opposite orientation, or a = (- 1)j1+1. 
Accordingly, the orientation fields of the list elements (2) and (3) are set to 
these values. 

We take H1 to be the ray 

ft>O fori=l, 
Yi 0 for i > 1. 

A search is made to find the points where this ray meets the boundary Zn-'. 
We do this as follows: Taking the first list element, for i = 1, . .. , n, we set the 
computation variable xi equal to either the interval or the point value given 
by the field si. Then with the functions f2, f3, ... , fn, and using interval 
arithmetic, we generate interval values for Y2, Y3, ... , Yn . If any of these 
intervals does not contain the zero point, the ray H1 cannot intersect this part 
of the boundary, and the list element is discarded. If all these intervals contain 
the zero point, then we form an interval for y, using f1 . If this interval lies 
to the left of the zero point, again the ray H1 cannot intersect this part of the 
boundary, and the list element is discarded. If the interval lies to the right of the 
zero point, it is likely the ray H1 meets this portion of the boundary, and the 
list element is removed from L and added to a second list L1 (initially empty) 
for later attention. In the remaining case where the zero point is contained in 
the y1-interval, whether or not the ray H1 intersects this part of the boundary 
is uncertain, and we proceed as follows: From the list element we construct all 
possible list elements that can be formed by replacing interval fields si by either 
their right half or left half subintervals, copying point fields 5i, and copying 
the orientation value. These 2n-1 list elements together then replace the first 
element of the list L. The whole process described can now be repeated with 
the new first element of L. (An alternative plan would be to form only two 
new elements, subdividing only the widest interval, and using these to replace 
the first element of L.) 
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If the point 0 does not lie on F(&B), then the process described will even- 
tually exhaust the list L. The list L1 may now be examined. In general it 
contains elements which together define a subset BM1) of the boundary of B. 
Consider an element on this list with orientation a defining a point set S lying 
in a side of B with xj fixed. The ray H1 may meet the F image of S at 
one or more points, and for each of these there will be a point of S where the 
functions f2, f3, ... , f, are simultaneously zero. The contribution made by 
these points to i(H1, Zn-1) is 

(4) a E sgn (det ( } (, 2,f3, --, fn ) 

or a times the topological degree of the Rn-1 to Rn-1 mapping defined by 
f2, f3, ... , fn on the (n - 1)-dimensional region S (embedded in Rn). We 
need to sum the contributions (4) over all elements in the list L1 in order to 
get d(F, B, 0). 

For this computation we proceed in a similar manner as with B and form 
boundary elements. For each element of L1 with orientation a, we form 
2(n - 1) boundary elements for a new list L by copying all fields si except for 
one interval field which is converted to a point field, using an endpoint of the 
interval. If the interval field converted was the jth interval field, counting from 
si toward sn , then the orientation assigned is a times (-1)1 or times (-1)j+I 
according as the left or the right endpoint is assigned. This time, however, 
regions defined by two elements on the list L may be identical. These elements 
always have opposite orientations and both elements must be discarded. It is 
also possible, because of the subdivision process, for the region of one element to 
be contained within that of a second element. Here the list must be corrected by 
discarding these elements and replacing them with new elements to represent 
the unduplicated region. After the list L is corrected, it is certain that the 
functions f2, f3, ... , fn are never simultaneously zero on the region defined 
by any element. This is because an element appears on the list L only if it is 
part of the boundarv of some element on the list L1 (so fi is positive) and 
simultaneously is part of the boundary of some element not on the list L1 (so 
some function other than fi is positive or is negative). 

The computation with the list L is similar to that described before, except 
that the number of functions evaluated is reduced by one. This time the ray 
H1 is 

ft>0 fori=2, 
Yi t 0 for i > 2. 

The process will exhaust the list L and again yield a list L1 requiring further 
examination. 

Each time the process is carried out, the dimension of the point sets examined 
and the number of functions treated is reduced by one. The general description 
given of the process for the first and second cycles can be revised to cover all 
instances. For example, the first cycle may be viewed as the case where L1 has 
a single list element with orientation +1 defining the starting box B. On the 
nth iteration, after the list L1 is converted to a list L, all interval fields si 
of an L-element have been replaced by endpoints, so the element designates 
a point P with an orientation a . At the end of this iteration, only the point 
elements with positive fr-values are on the new list L1 . For this case, the 
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relevant equation (4) has the number 1 in place of the Jacobian, so summing 
the orientations of elements on this last L1-list finally yields d(F, B, 0) . 

With this method only signs need to be determined, but the precision of 
computation necessary depends on the complexity of the functions fi. If the 
precision is too low, the intervals obtained may be too wide, enclosing the zero 
point when they should not. This can cause the subdivision of list elements to 
continue indefinitely. We programmed the computation using range arithmetic 
[2], so that, if necessary, the precision could be increased during the computa- 
tion. 

3. AN EXAMPLE 

Consider the mapping from R3 into R3 defined by 

f=X2 + X22-x3, f2 = X22 + 2 _ Xi, f3= X2+ 2 _ X2. 

These functions have a zero at (0, 0, 0) and at (i- 2 ). We compute the 
degree for a box B enclosing the origin, the product of the interval [- 1, 4] 
for each variable xi. For this example, no subdivision of boundary regions 
is needed. In our calculation, for the sake of simplicity, we always give the 
true interval values. An actual implementation of interval arithmetic may yield 
somewhat wider intervals, depending on the particular system used. 

There are initially six elements defining sides of B on the list L, and only 
the element given below is moved to the list L1 when it is tested: 

(5) SI1=[4 I ] a2[1 =] s3 ; C-1. 

For this domain, the interval for fi is [4, 3j, to the right of 0, as required, 
and the intervals for f2 and f3 are [- 3 , 3 ], containing 0, as required. All of 
the other five L-elements are discarded, either because their f2- or f3-interval 
does not contain 0, or because their f1-interval is to the left of 0. 

The region B(1) is defined by the single element (5), and so the list L on 
the second iteration has four elements defining its sides. Of these only the one 
given below is transferred to L1 during testing: 

(6) SI-1 =2[- I] a3 4 C= 1. 

For this element, the interval for f2 is [ 15, 3], to the right of 0, as required, 
and the interval for f3 is [- I8, 3 ], containing the zero point, as required. The 
other three elements either have an f3-interval that does not contain 0, or have 
an f2-interval to the left of 0. 

The region B(2) is defined by the single element (6), and so the list L on the 
last iteration has two elements defining its sides, which now are points. Only 
the element 

l=4, S2 4, 53-4 a=1 

yields a positive sign for f3. Accordingly, the degree equals -1 , the orientation 
value of this single element. 

4. A BISECTION METHOD 

When n is one, the topological degree, when it is defined, can equal only 
+ 1, -1, or 0, while when n is greater than one, the topological degree can 
equal any integer. On the other hand, the topological degree mod 2, or the 
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crossing parity, is more consistent and has a value of zero or one for all n. 
A nonzero crossing parity for F over a box B also indicates a zero inside 
B. The crossing parity is considerably easier to calculate than the topological 
degree, since in mod 2 arithmetic + 1 and -1 are the same, so the orientation 
field can be dropped from the representation of a list element. At the same time 
the useful property of the topological degree, additivity over disjoint regions, is 
preserved. We used the crossing parity for our generalization of the bisection 
method. 

The computation description in ?2 serves also for the crossing parity, except 
that all orientation computation is ignored. The crossing parity then is the 
number mod 2 of elements on the list L1 after the nth iteration is complete. 

The procedure described for topological degree or crossing parity never ter- 
minates if the boundary of B contains a zero, so some changes are needed to 
allow a general program to handle this case appropriately. Unending subdivi- 
sion can only occur during the first iteration with the list L, when the boundary 
of B is examined. Our arrangement for the subdivision of the lead element 
of L is as follows: An xi-interval is divided into two only if its width is over 
a preset minimum W. If it turns out that no xi-interval is divided, this is 
the signal for halting the procedure, but first the precision of computation is 
checked. If it is not adequate, precision is increased and the computation is 
reentered with the lead element unchanged. If precision is adequate, the lead 
element is preserved as the "terminating element". 

The general procedure of our bisection program is as follows: First each of 
the functions fi is checked to some extent to expose difficulties in definition 
over the box B. Then an initial evaluation of crossing parity is made for 
B. If this fails, a point on the boundary of B, derived from the preserved 
terminating element, is displayed to indicate the source of difficulty. If the initial 
crossing parity is successful and indicates a zero inside B, the regular bisection 
routine can begin. The box B is divided into two subboxes by subdividing one 
xi-interval, the choice made by rotation, except that no interval is subdivided 
further after its width becomes small enough to specify its variable to the desired 
number of decimal places. A successful crossing parity computation on either 
subbox results in the discard of one subbox, and the other one becomes the 
new box B. If the crossing parity can always be computed, eventually all 
dimensions of B become small enough to satisfy accuracy requirements, and 
the B-centerpoint can be displayed as the zero. 

When the parity computation on a subbox fails, a likely reason is that by 
accident an isolated zero is on the common side of the two subboxes. To take 
advantage of this, we set the width W low enough so that the following can 
be done: A box Bo contained in B is constructed to enclose the terminating 
boundary element, but of a size small enough to satisfy accuracy requirements. 
If the crossing parity computation on Bo is successful and the parity is nonzero, 
then again the midpoint of this box can be displayed as the zero. When this is 
not the case, what procedure to use next is unclear. One can try various other 
strategems, like rearranging the subdivision of B into two subboxes, reducing 
the width W, etc. But it is not possible to program bisection to always succeed 
in locating a zero, because the functions may be zero or near zero over a wide 
region [1, pp. 45-47], an infrequent occurrence but a difficult one to treat suc- 
cessfully. At some point in the program there must be an "escape" exit where 
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no zero is claimed. Instead a point within the current box B can be indicated 
as a "near zero", perhaps along with its computed fi-values. 

5. A PROGRAM TO LOCATE ALL ZEROS IN B 
If it is known that the functions fi have all partial derivatives, and that their 

Jacobian is nonzero at each zero, then a structured search through B may be 
undertaken to locate the zeros, which cannot be infinite in number. The fol- 
lowing detail is useful here. Suppose over the box B each partial derivative 
aJf/axj is bounded in an interval, and by further interval arithmetic it is de- 
termined that the functions' Jacobian over B is never zero, that is, its interval 
does not contain the zero point. In this case there is at most one zero in B. 
For if P(a1, ... , an ) and Q(fl, . ... , 1h1) are two distinct zeros in B, then by 
the mean value theorem [5, pp. 268-269] 

? = fi (P) -fi(Q) = E b (i (aj 
_ 

,Bj) , i=1..., n, 
j-1 

ax 

where Ci, i = 1, ..., n, are points along the line segment joining P and Q. 
Therefore, 

-f2(C2) 0f ) ffi (Cj) Of1(Cl) af(Cl) Ox WI 
ax, aX2 *-- x [x 1 3 0 

A fn (C2) A fn (C2) A fn (C2) a2- fin O 
_ OXI aX2 ax, 

The determinant of the matrix above must be zero, yet it may be viewed as a 
Jacobian with its elements chosen inside the various partial derivative intervals 
for B, and this contradicts the assumption that the Jacobian interval does not 
contain the zero point. 

Our program begins by checking, with interval arithmetic, that the functions 
fi and their partial derivatives are defined at all points in the initial box B, 
and that the crossing parity is defined on B. A list L2 of boxes is constructed, 
initially containing a single list element defining the box B. Then the following 
iteration is performed until the list L2 is empty. All functions fi and their 
partial derivatives are bounded in intervals over the box defined by the first L2- 
element. This list element is discarded if any function interval does not contain 
the zero point. If this is not the case, then an interval arithmetic check of the 
Jacobian is made. If it is not certain that the zero point is outside the deter- 
minant interval, the box is divided into two subboxes as described previously 
for bisection, and two list elements representing these subboxes replace the lead 
element of the list L2 . Otherwise, if it is certain that the Jacobian interval does 
not contain the zero point, then the crossing parity for this box is computed. If 
the parity is zero, it is safe to discard the list element, since as we have seen, 
there cannot be two or more zeros inside the element domain. If the parity is 
one, there is exactly one zero in the domain, and the element is removed and 
added to a second list L3, initially empty. 

It may happen that the crossing parity computation fails, and then, as with 
the bisection program, a terminating boundary element is obtained on which the 
functions fi are zero or close to zero. In this case a list element is constructed 
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defining a small box Bo which encloses the points of the boundary element, and 
lies entirely within two or more of the boxes on the list L2. The Bo-element 
is placed at the head of the list L2 after all L2-list boxes intersecting Bo are 
suitably dissected into a set of subboxes so that the Bo region is not doubly 
represented. 

After the list L2 is exhausted, the zeros which have been individually box- 
enclosed by means of the list L3 can be found by Newton's method, or a similar 
method. 

Usually, for a box B it is not known in advance whether or not the Jacobian is 
nonzero at all zeros. Our program accepts any proposed box B, but terminates 
the search when the lead element of the list L2 defines a box with dimensions 
smaller than a preset limit. A point within this box is displayed as a point where 
the Jacobian and the functions f1 are simultaneously "too close to zero". 

A version of this program is contained in an electronically accessible file for 
range arithmetic [2]. 
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